LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimization Induced Equilibrium Networks: An Explicit Optimization Perspective for Understanding Equilibrium Models

Photo by googledeepmind from unsplash

To reveal the mystery behind deep neural networks (DNNs), optimization may offer a good perspective. There are already some clues showing the strong connection between DNNs and optimization problems, e.g.,… Click to show full abstract

To reveal the mystery behind deep neural networks (DNNs), optimization may offer a good perspective. There are already some clues showing the strong connection between DNNs and optimization problems, e.g., under a mild condition, DNN's activation function is indeed a proximal operator. In this paper, we are committed to providing a unified optimization induced interpretability for a special class of networks—equilibrium models, i.e., neural networks defined by fixed point equations, which have become increasingly attractive recently. To this end, we first decompose DNNs into a new class of unit layer that is the proximal operator of an implicit convex function while keeping its output unchanged. Then, the equilibrium model of the unit layer can be derived, we name it Optimization Induced Equilibrium Networks (OptEq). The equilibrium point of OptEq can be theoretically connected to the solution of a convex optimization problem with explicit objectives. Based on this, we can flexibly introduce prior properties to the equilibrium points: 1) modifying the underlying convex problems explicitly so as to change the architectures of OptEq; and 2) merging the information into the fixed point iteration, which guarantees to choose the desired equilibrium point when the fixed point set is non-singleton. We show that OptEq outperforms previous implicit models even with fewer parameters.

Keywords: equilibrium models; optimization induced; induced equilibrium; optimization; point

Journal Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.