LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Superadditivity and Convex Optimization for Globally Optimal Cell Segmentation Using Deformable Shape Models

Photo from wikipedia

Cell nuclei segmentation is challenging due to shape variation and closely clustered or partially overlapping objects. Most previous methods are not globally optimal, limited to elliptical models, or are computationally… Click to show full abstract

Cell nuclei segmentation is challenging due to shape variation and closely clustered or partially overlapping objects. Most previous methods are not globally optimal, limited to elliptical models, or are computationally expensive. In this work, we introduce a globally optimal approach based on deformable shape models and global energy minimization for cell nuclei segmentation and cluster splitting. We propose an implicit parameterization of deformable shape models and show that it leads to a convex energy. Convex energy minimization yields the global solution independently of the initialization, is fast, and robust. To jointly perform cell nuclei segmentation and cluster splitting, we developed a novel iterative global energy minimization method, which leverages the inherent property of superadditivity of the convex energy. This property exploits the lower bound of the energy of the union of the models and improves the computational efficiency. Our method provably determines a solution close to global optimality. In addition, we derive a closed-form solution of the proposed global minimization based on the superadditivity property for non-clustered cell nuclei. We evaluated our method using fluorescence microscopy images of five different cell types comprising various challenges, and performed a quantitative comparison with previous methods. Our method achieved state-of-the-art or improved performance.

Keywords: cell; deformable shape; energy; segmentation; globally optimal

Journal Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.