LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unsupervised Graph Embedding via Adaptive Graph Learning

Photo from wikipedia

Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding. However, the performance of GAEs is very dependent on the quality of the graph structure, i.e., of the… Click to show full abstract

Graph autoencoders (GAEs) are powerful tools in representation learning for graph embedding. However, the performance of GAEs is very dependent on the quality of the graph structure, i.e., of the adjacency matrix. In other words, GAEs would perform poorly when the adjacency matrix is incomplete or be disturbed. In this paper, two novel unsupervised graph embedding methods, unsupervised graph embedding via adaptive graph learning (BAGE) and unsupervised graph embedding via variational adaptive graph learning (VBAGE) are proposed. The proposed methods expand the application range of GAEs on graph embedding, i.e, on the general datasets without graph structure. Meanwhile, the adaptive learning mechanism can initialize the adjacency matrix without being affected by the parameter. Besides that, the latent representations are embedded with the Laplacian graph structure to preserve the topology structure of the graph in the vector space. Moreover, the adjacency matrix can be self-learned for better embedding performance when the original graph structure is incomplete. With adaptive learning, the proposed method is much more robust to the graph structure. Experimental studies on several datasets validate our design and demonstrate that our methods outperform baselines by a wide margin in node clustering, node classification, link prediction, and graph visualization tasks.

Keywords: embedding via; unsupervised graph; graph; graph embedding; graph structure

Journal Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.