LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Towards JPEG-Resistant Image Forgery Detection and Localization Via Self-Supervised Domain Adaptation.

With wide applications of image editing tools, forged images (splicing, copy-move, removal and etc.) have been becoming great public concerns. Although existing image forgery localization methods could achieve fairly good… Click to show full abstract

With wide applications of image editing tools, forged images (splicing, copy-move, removal and etc.) have been becoming great public concerns. Although existing image forgery localization methods could achieve fairly good results on several public datasets, most of them perform poorly when the forged images are JPEG compressed as they are usually done in social networks. To tackle this issue, in this paper, a self-supervised domain adaptation network, which is composed of a backbone network with Siamese architecture and a compression approximation network (ComNet), is proposed for JPEG-resistant image forgery detection and localization. To improve the performance against JPEG compression, ComNet is customized to approximate the JPEG compression operation through self-supervised learning, generating JPEG-agent images with general JPEG compression characteristics. The backbone network is then trained with domain adaptation strategy to localize the tampering boundary and region, and alleviate the domain shift between uncompressed and JPEG-agent images. Extensive experimental results on several public datasets show that the proposed method outperforms or rivals to other state-of-the-art methods in image forgery detection and localization, especially for JPEG compression with unknown QFs.

Keywords: localization; image forgery; jpeg; domain; image

Journal Title: IEEE transactions on pattern analysis and machine intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.