LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Task-Aware Weakly Supervised Object Localization With Transformer.

Photo by tolga__ from unsplash

Weakly supervised object localization (WSOL) aims to predict both object locations and categories with only image-level class labels. However, most existing methods rely on class-specific image regions for localization, resulting… Click to show full abstract

Weakly supervised object localization (WSOL) aims to predict both object locations and categories with only image-level class labels. However, most existing methods rely on class-specific image regions for localization, resulting in incomplete object localization. To alleviate this problem, we propose a novel end-to-end task-aware framework with a transformer encoder-decoder architecture (TAFormer) to learn class-agnostic foreground maps, including a representation encoder, a localization decoder, and a classification decoder. The proposed TAFormer enjoys several merits. First, the designed three modules can effectively perform class-agnostic localization and classification in a task-aware manner, achieving remarkable performance for both tasks. Second, an optimal transport algorithm is proposed to provide pixel-level pseudo labels to online refine foreground maps. To the best of our knowledge, this is the first work by exploring a task-aware framework with a transformer architecture and an optimal transport algorithm to achieve accurate object localization for WSOL. Extensive experiments with four backbones on two standard benchmarks demonstrate that our TAFormer achieves favorable performance against state-of-the-art methods. Furthermore, we show that the proposed TAFormer provides higher robustness against adversarial attacks and noisy labels.

Keywords: task aware; localization; weakly supervised; object localization; transformer

Journal Title: IEEE transactions on pattern analysis and machine intelligence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.