In the field of hydrological modelling, the global and automatic parameter calibration has been a hot issue for many years. Among automatic parameter optimization algorithms, the shuffled complex evolution developed… Click to show full abstract
In the field of hydrological modelling, the global and automatic parameter calibration has been a hot issue for many years. Among automatic parameter optimization algorithms, the shuffled complex evolution developed at the University of Arizona (SCE-UA) is the most successful method for stably and robustly locating the global “best” parameter values. Ever since the invention of the SCE-UA, the profession suddenly has a consistent way to calibrate watershed models. However, the computational efficiency of the SCE-UA significantly deteriorates when coping with big data and complex models. For the purpose of solving the efficiency problem, the recently emerging heterogeneous parallel computing (parallel computing by using the multi-core CPU and many-core GPU) was applied in the parallelization and acceleration of the SCE-UA. The original serial and proposed parallel SCE-UA were compared to test the performance based on the Griewank benchmark function. The comparison results indicated that the parallel SCE-UA converged much faster than the serial version and its optimization accuracy was the same as the serial version. It has a promising application prospect in the field of fast hydrological model parameter optimization.
               
Click one of the above tabs to view related content.