LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Semi-External Memory Sparse Matrix Multiplication for Billion-Node Graphs

Photo by kellysikkema from unsplash

Sparse matrix multiplication is traditionally performed in memory and scales to large matrices using the distributed memory of multiple nodes. In contrast, we scale sparse matrix multiplication beyond memory capacity… Click to show full abstract

Sparse matrix multiplication is traditionally performed in memory and scales to large matrices using the distributed memory of multiple nodes. In contrast, we scale sparse matrix multiplication beyond memory capacity by implementing sparse matrix dense matrix multiplication (SpMM) in a semi-external memory (SEM) fashion; i.e., we keep the sparse matrix on commodity SSDs and dense matrices in memory. Our SEM-SpMM incorporates many in-memory optimizations for large power-law graphs. It outperforms the in-memory implementations of Trilinos and Intel MKL and scales to billion-node graphs, far beyond the limitations of memory. Furthermore, on a single large parallel machine, our SEM-SpMM operates as fast as the distributed implementations of Trilinos using five times as much processing power. We also run our implementation in memory (IM-SpMM) to quantify the overhead of keeping data on SSDs. SEM-SpMM achieves almost 100 percent performance of IM-SpMM on graphs when the dense matrix has more than four columns; it achieves at least 65 percent performance of IM-SpMM on all inputs. We apply our SpMM to three important data analysis tasks—PageRank, eigensolving, and non-negative matrix factorization—and show that our SEM implementations significantly advance the state of the art.

Keywords: sparse matrix; spmm; memory; matrix multiplication

Journal Title: IEEE Transactions on Parallel and Distributed Systems
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.