LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Online Collaborative Data Caching in Edge Computing

Photo by campaign_creators from unsplash

In the edge computing (EC) environment, edge servers are deployed at base stations to offer highly accessible computing and storage resources to nearby app users. From the app vendor's perspective,… Click to show full abstract

In the edge computing (EC) environment, edge servers are deployed at base stations to offer highly accessible computing and storage resources to nearby app users. From the app vendor's perspective, caching data on edge servers can ensure low latency in app users’ retrieval of app data. However, an edge server normally owns limited resources due to its limited size. In this article, we investigate the collaborative caching problem in the EC environment with the aim to minimize the system cost including data caching cost, data migration cost, and quality-of-service (QoS) penalty. We model this collaborative edge data caching problem (CEDC) as a constrained optimization problem and prove that it is $\mathcal {NP}$NP-complete. We propose an online algorithm, called CEDC-O, to solve this CEDC problem during all time slots. CEDC-O is developed based on Lyapunov optimization, works online without requiring future information, and achieves provable close-to-optimal performance. CEDC-O is evaluated on a real-world data set, and the results demonstrate that it significantly outperforms four representative approaches.

Keywords: data caching; online collaborative; cedc; problem; edge computing; edge

Journal Title: IEEE Transactions on Parallel and Distributed Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.