LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Batch Crowdsourcing for Complex Tasks Based on Distributed Team Formation in E-Markets

Photo from wikipedia

Team formation has been extensively studied for complex task crowdsourcing in E-markets, in which a set of workers are hired to form a team to complete a complex task collaboratively.… Click to show full abstract

Team formation has been extensively studied for complex task crowdsourcing in E-markets, in which a set of workers are hired to form a team to complete a complex task collaboratively. However, existing studies have two typical drawbacks: 1) each team is created for only one task, which may be costly and cannot accommodate crowdsourcing markets with a large number of tasks; and 2) most existing studies form teams in a centralized manner by the requesters, which may place a heavy burden on requesters. In fact, we observe that many complex tasks at real-world crowdsourcing platforms have similar skill requirements and workers are often connected through social networks. Therefore, this paper explores distributed team formation-based batch crowdsourcing for complex tasks to address the drawbacks in existing studies, in which similar tasks can be addressed in a batch to reduce computational costs and workers can self-organize through their social networks to form teams. To solve such an NP-hard problem, this paper presents two approaches: one is to form a fixed team for all tasks in the batch; the other is to form a basic team that can be dynamically adjusted for each task in the batch. In comparison, the former approach has lower computational complexity but the latter approach performs better in reducing the total payments by requesters. With the experiments on a real-world dataset comparing with previous benchmark approaches, it is shown that the presented approaches have better performance in saving the costs of forming teams, payments by requesters, and communication among team members; moreover, the presented approaches have higher success rate of tasks and much better scalability.

Keywords: complex tasks; team; team formation; batch crowdsourcing; distributed team

Journal Title: IEEE Transactions on Parallel and Distributed Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.