A “one-and-a-half stage” forward-flyback converter for electrolytic capacitor-less light-emitting diode (LED) driver with high power factor (PF), high efficiency, low output ripple current, and long lifetime has been proposed and… Click to show full abstract
A “one-and-a-half stage” forward-flyback converter for electrolytic capacitor-less light-emitting diode (LED) driver with high power factor (PF), high efficiency, low output ripple current, and long lifetime has been proposed and studied in this paper. The basic topology of the proposed topology is a single-switch forward-flyback converter for achieving high PF. In addition, a buck converter is inserted between the forward subconverter and the load for creating two paralleled power transfer paths. The most of input energy directly reaches the load through flyback subconverter, and only about 1/4 of total energy is transferred to the load through forward subconverter and buck converter. Therefore, the proposed topology is a “one-and-a-half stage” converter and can achieve higher efficiency than the traditional two-stage topologies. At the same time, power decoupling can be realized and the electrolytic capacitor can be eliminated. Optimal control scheme, detailed analysis, and design considerations for this improved converter are presented. Finally, an experimental prototype for 28 V/700 mA LED driver was built up to verify the theoretical analysis.
               
Click one of the above tabs to view related content.