An advanced approach of the internal energy flow control of a multiport device based on a modular multilevel converter (MMC) was proposed. Such a multiport device offers various connecting points… Click to show full abstract
An advanced approach of the internal energy flow control of a multiport device based on a modular multilevel converter (MMC) was proposed. Such a multiport device offers various connecting points as ac terminals, the main dc terminal as well as the dc terminals of the MMC modules. State-of-the-art multiport concepts have restrictions concerning the flexibility of connecting the available ports. The proposed concept makes an unrestricted energy interchange between all ports possible without affecting the ac grid and the main dc terminal. It contains a microscopic and macroscopic view of the entire system and an analytic description in a double synchronous reference frame. This approach allows the identification of degrees of freedom for the internal energy flow control to overcome the mentioned restrictions of state-of-the-art multiport devices. Beyond numerous simulations calculations, the proposed concept has been implemented to a prototype of a multiport device which consists of an MMC with integrated batteries in power electronics laboratory. The approach has been successfully tested and verified with measurement results.
               
Click one of the above tabs to view related content.