LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Direct Battery Hookup Filterless Pulsewidth Modulation Class D Amplifier With >100 dB PSRR for 100 Hz to 1 kHz, 0.005% THD+N and 16 μV Noise

Photo by irishinechka from unsplash

Due to ever-increasing demand for high-level integration, low power dissipation and high fidelity, Class D amplifier ICs (CDA ICs) need to feature very high power supply rejection ratio (PSRR), very… Click to show full abstract

Due to ever-increasing demand for high-level integration, low power dissipation and high fidelity, Class D amplifier ICs (CDA ICs) need to feature very high power supply rejection ratio (PSRR), very low total harmonic distortion plus noise (THD + N), low output noise, high power-efficiency, low electromagnetic interference (EMI), and fixed switching frequency. We propose a fully integrated filterless CDA IC embodying a novel loop-filter that simultaneously features an ultrahigh loop gain of >200 dB and high carrier attenuation of −10 dB. Due to the ultrahigh loop gain and high carrier attenuation, the linearity and PSRR of the CDA IC is significantly improved. The proposed CDA IC further embodies a novel deadtime circuit that can eliminate the false switching in the Class D output stage, hence reducing the EMI and further improving the linearity of the CDA IC. The proposed CDA IC simultaneously features an ultrahigh PSRR (>100 dB from 100 Hz to 1 kHz), very low THD + N (0.005%), very low output noise (16 μV), and low EMI (10 dB below the EN55022 Class B standard)—yet with fixed switching frequency (400 kHz). When benchmarked against state-of-the-art designs, our CDA IC features the highest PSRR, allowing hookup directly to the battery and features the lowest output noise.

Keywords: 100 khz; psrr; class; cda; class amplifier; psrr 100

Journal Title: IEEE Transactions on Power Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.