LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Composite Selective Harmonic Elimination Model Predictive Control for Seven-Level Hybrid-Clamped Inverters With Optimal Switching Patterns

Photo by charlesdeluvio from unsplash

A composite strategy that combines selective harmonic elimination pulsewidth modulation (SHE-PWM) and model predictive control (MPC) for seven-level hybrid-clamped (7L-HC) inverters is presented in this article. By introducing the unified… Click to show full abstract

A composite strategy that combines selective harmonic elimination pulsewidth modulation (SHE-PWM) and model predictive control (MPC) for seven-level hybrid-clamped (7L-HC) inverters is presented in this article. By introducing the unified SHE formulation, all seven-level switching patterns and corresponding switching angles can be obtained simultaneously. Therefore, the optimal switching pattern with the designed optimization goal of each modulation index can be evaluated, and the best expected output performance is achieved. For the voltage balancing issue of 7L-HC, MPC is adopted to control the dc-link and flying capacitors. After receiving the output voltage level signal from the SHE-PWM modulator, the optimal switching state that belongs to the received output voltage level that minimizes the cost function is selected by the MPC module, where the cost function is designed to simultaneously balance capacitor voltages and reduce the switching frequency. Dynamic weighting factors with variable band limits are also proposed to further improve the system performance. The potential industrial application of high-power motor drive is used as an example in designing the key parameters for both SHE and MPC parts. Simulation and experimental results confirmed the validity of this composite SHE-MPC strategy in reducing the switching frequency and improving harmonic performances while keeping capacitor voltages well balanced.

Keywords: seven level; selective harmonic; control; level; harmonic elimination; optimal switching

Journal Title: IEEE Transactions on Power Electronics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.