LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Analysis and Control of Modular Multilevel Matrix Converters Under Branch Fault Conditions

Photo from wikipedia

The modular multilevel matrix converter (M3C) is a promising topology for high-voltage and high-power direct ac-to-ac power conversion applications. Fault tolerance ability is one of the advantages of the M3C.… Click to show full abstract

The modular multilevel matrix converter (M3C) is a promising topology for high-voltage and high-power direct ac-to-ac power conversion applications. Fault tolerance ability is one of the advantages of the M3C. To further enhance the reliability of the M3C, this article proposes a novel branch current configuration method for branch fault conditions, which is available either one or two branches are failed. By deriving basic branch current configurations and analyzing branch dc power equations under branch fault conditions, feasible branch current configurations can be directly derived. In terms of minimizing the maximum peak branch current, the derived configuration is also the optimal one for the single branch fault condition. Compared with the existing method, the proposed method does not need to solve configuration coefficients of branch currents offline, which is automatically adaptive to different load conditions. An M3C prototype with three submodules each branch is built, and experimental results are presented to validate the proposed branch fault tolerance method.

Keywords: fault conditions; modular multilevel; multilevel matrix; branch; branch current; branch fault

Journal Title: IEEE Transactions on Power Electronics
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.