LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transient-Voltage-Based Protection Scheme for DC Line Faults in the Multiterminal VSC-HVDC System

Photo by pawelmc from unsplash

DC line faults are major issues for a multiterminal high-voltage direct current (HVDC) system based on voltage-source converter (VSC). The fault current increases quickly along with a large peak, and… Click to show full abstract

DC line faults are major issues for a multiterminal high-voltage direct current (HVDC) system based on voltage-source converter (VSC). The fault current increases quickly along with a large peak, and complete isolation of the faulted system is not a viable option. Therefore, protection with high selectivity and accuracy is essential. In this paper, a new protection scheme for dc line in multiterminal VSC-HVDC system is proposed, which consists of a main protection and a backup protection. Both the protection principles are based on the supplemental inductor placed at each end of the dc line. Fault identification can be achieved by calculating the ratio of the transient voltages (ROTV) at both sides of the inductor. The main protection is able to detect the fault quickly without communication, while the backup protection is a pilot method based on the ROTVs at both ends of dc line, which is employed to identify the high-resistance faults and offer a backup in case the former fails. Comparison with some previous protection methods shows that the performance of the proposed protection scheme is promising. Numerous simulation studies carried out in PSCAD/EMTDC and real-time digital simulator (RTDS) under various conditions have demonstrated that fault identification with high selectivity and strong robustness against fault resistance and disturbance can be achieved by employing the proposed protection scheme.

Keywords: hvdc system; protection scheme; protection; line

Journal Title: IEEE Transactions on Power Delivery
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.