LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Partial Discharges Pattern Recognition of Transformer Defect Model by LBP & HOG Features

Photo from wikipedia

Partial discharge (PD) measurement and identification have great importance to condition monitoring of power transformers. In this paper, a new method for recognition of single and multi-source of PD based… Click to show full abstract

Partial discharge (PD) measurement and identification have great importance to condition monitoring of power transformers. In this paper, a new method for recognition of single and multi-source of PD based on extraction of high level image features has been introduced. A database, involving 365 samples of phase-resolved PD (PRPD) data, is developed by measurement carried out on transformer artificial defect models (having different sizes of defect) under a specific applied voltage, to be used for proposed algorithm validation. In the first step, each set of PRPD data is converted into grayscale images to represent different PD defects. Two “image feature extraction” methods, the Local Binary Pattern (LBP), and the Histogram of Oriented Gradient (HOG), are employed to extract features from the obtained gray scale images. Different variants of Support Vector Machine (SVM) are adjusted for optimal classification of PD sources in this process. Impact of the employed parameters in the image processing such as image resolution, random noise, and phase shift, on identification accuracy is investigated and addressed. It is shown that by using HOG-SVM method 99.3% accuracy can be achieved. This is hardly affected by various external factors. Two case studies have been conducted on multi-source PD for evaluating the performance of the proposed algorithm. A void defect is implemented into the transformer model and the resultant recorded signal is used for the study. The DBSCAN algorithm is used as the mean of PD source clustering and sub-PRPD pattern development. It is shown that HOG-SVM method has superior performance in identifying active sources, under sub-PRPD pattern application.

Keywords: hog; partial discharges; model; image; defect; recognition

Journal Title: IEEE Transactions on Power Delivery
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.