The current state-of-the-art method used for medium- and long-term planning studies of hydrothermal power system operation is the stochastic dual dynamic programming (SDDP) algorithm. The computational savings provided by this… Click to show full abstract
The current state-of-the-art method used for medium- and long-term planning studies of hydrothermal power system operation is the stochastic dual dynamic programming (SDDP) algorithm. The computational savings provided by this method notwithstanding, it still relies on major system simplifications to achieve acceptable performances in practical applications. In contrast with its actual implementation, simplifications in the planning stage may induce time-inconsistent policies, and consequently, a suboptimality gap. In this paper, we extend the concept of time inconsistency to measure the effects of modeling simplifications in the SDDP framework for hydrothermal operation planning. Case studies involving simplifications in transmission lines modeling and in security criteria indicate that these source of time inconsistency may result in unexpected reservoir depletion and spikes in energy market spot prices.
               
Click one of the above tabs to view related content.