LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optimal Wind Farm Allocation in Multi-Area Power Systems Using Distributionally Robust Optimization Approach

Photo from wikipedia

This paper presents a distributionally robust planning model to determine the optimal allocation of wind farms in a multi-area power system, so that the expected energy not served (EENS) is… Click to show full abstract

This paper presents a distributionally robust planning model to determine the optimal allocation of wind farms in a multi-area power system, so that the expected energy not served (EENS) is minimized under uncertain wind power and generator forced outages. Unlike conventional stochastic programming approaches that rely on detailed information of the exact probability distribution, the proposed method attempts to minimize the expectation term over a collection of distributions characterized by accessible statistical measures, so it is more practical in cases where the detailed distribution data is unavailable. This planning model is formulated as a two-stage problem, where the wind power capacity allocation decisions are determined in the first stage, before the observation of uncertainty outcomes, and operation decisions are made in the second stage under specific uncertainty realizations. In this paper, the second-stage decisions are approximated by linear decision rule functions, so that the distributionally robust model can be reformulated into a tractable second-order cone programming problem. Case studies based on a five-area system are conducted to demonstrate the effectiveness of the proposed method

Keywords: wind; multi area; distributionally robust; power; allocation

Journal Title: IEEE Transactions on Power Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.