Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant… Click to show full abstract
Unit commitment (UC) is a key operational problem in power systems for the optimal schedule of daily generation commitment. Incorporating uncertainty in this already difficult mixed-integer optimization problem introduces significant computational challenges. Most existing stochastic UC models consider either a two-stage decision structure, where the commitment schedule for the entire planning horizon is decided before the uncertainty is realized, or a multistage stochastic programming model with relatively small scenario trees to ensure tractability. We propose a new type of decomposition algorithm, based on the recently proposed framework of stochastic dual dynamic integer programming (SDDiP), to solve the multistage stochastic unit commitment (MSUC) problem. We propose a variety of computational enhancements to SDDiP, and conduct systematic and extensive computational experiments to demonstrate that the proposed method is able to handle elaborate stochastic processes and can solve MSUCs with a huge number of scenarios that are impossible to handle by existing methods.
               
Click one of the above tabs to view related content.