LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Resilience-Oriented DG Siting and Sizing Considering Stochastic Scenario Reduction

Photo from wikipedia

In this paper, a fuel-based distributed generator (DG) allocation strategy is proposed to enhance the distribution system resilience against extreme weather. The long-term planning problem is formulated as a two-stage… Click to show full abstract

In this paper, a fuel-based distributed generator (DG) allocation strategy is proposed to enhance the distribution system resilience against extreme weather. The long-term planning problem is formulated as a two-stage stochastic mixed-integer programming (SMIP). The first stage is to make decisions of DG siting and sizing under the given budget constraint. In the second stage, a post-extreme-event-restoration (PEER) is employed to minimize the operating cost in an uncertain fault scenario. In particular, this study proposes a method to select the most representative scenarios for the SMIP. First, a Monte Carlo Simulation (MCS) is introduced to generate sufficient scenarios considering random fault locations and load profiles. Then, the number of scenarios is reduced by the K-means clustering algorithm. The advantage of scenario reduction is to make a trade-off between accuracy and computational efficiency. Finally, the SMIP is solved by the progressive hedging algorithm. The case studies of the IEEE 33-bus and 123-bus test systems demonstrate the effectiveness of the proposed algorithm in reducing the expected energy not served (EENS), which is a critical criterion of resilience.

Keywords: siting sizing; resilience oriented; resilience; scenario; scenario reduction

Journal Title: IEEE Transactions on Power Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.