LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Convex Relaxations of the Short-Term Hydrothermal Scheduling Problem

Photo by enginakyurt from unsplash

This paper concerns the assessment of two methods for convex relaxation of the short-term hydrothermal scheduling problem. The problem is originally formulated as a mixed integer programming problem, and then… Click to show full abstract

This paper concerns the assessment of two methods for convex relaxation of the short-term hydrothermal scheduling problem. The problem is originally formulated as a mixed integer programming problem, and then approximated using both Lagrangian and Linear relaxation. The two relaxation methods are quantitatively compared using a realistic data description of the Northern European power system, considering a set of representative days. We find that the Lagrangian relaxation approximates system operational costs in the range 55-81% closer to the mixed integer programming problem solution than the Linear relaxation. We show how these cost gaps vary with season and climatic conditions. Conversely, the differences in both marginal cost of electricity and reserve capacity provided by the Lagrangian and Linear relaxation are muted.

Keywords: relaxation; problem; short term; scheduling problem; term hydrothermal; hydrothermal scheduling

Journal Title: IEEE Transactions on Power Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.