LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Switching Device-Cognizant Sequential Distribution System Restoration

Photo by egor_vikhrev from unsplash

This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types,… Click to show full abstract

This paper presents an optimization framework for sequential reconfiguration using an assortment of switching devices and repair process in distribution system restoration. Compared to existing studies, this paper considers types, capabilities and operational limits of different switching devices, making it applicable in practice. We develop a novel multi-phase method to find the optimal sequential operation of various switching devices and repair faulted areas. We consider circuit breakers, reclosers, sectionalizers, load breaker switches, and fuses. The switching operation problem is decomposed into two mixed-integer linear programming (MILP) subproblems. The first subproblem determines the optimal network topology and estimates the number of steps to reach that topology, while the second subproblem generates a sequence of switching operations to coordinate the switches. For repairing the faults, we design an MILP model that dispatches repair crews to clear faults and replace melted fuses. After clearing a fault, we update the topology of the network by generating a new sequence of switching operations, and the process continues until all faults are cleared. To improve the computational efficiency, a network reduction algorithm is developed to group line sections, such that only switchable sections are present in the reduced network. The proposed method is validated on the IEEE 123-bus and 8500-bus systems.

Keywords: topology; system restoration; distribution system

Journal Title: IEEE Transactions on Power Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.