LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A New Method for Simplifying Complex DC Systems and Obtaining the Controller Droop Coefficients

Photo by robertbye from unsplash

DC grid has become an important application in power transmission. However, the exist works only have the method to obtain the droop coefficient in a radial topology. Also, this droop… Click to show full abstract

DC grid has become an important application in power transmission. However, the exist works only have the method to obtain the droop coefficient in a radial topology. Also, this droop coefficient is for V-I droop control. There is no such like method to obtain the droop coefficient for the P-V droop control. This paper proposed a new method for a complex dc grid to obtain the droop coefficients. Firstly, based on the converter control strategies, the types of converter were classified. It will help to find out which kinds of converter can be participated into the dc-side voltage control. Secondly, a virtual node was defined, and the matrix of the dc grid was reshaped to fit the new added virtual node by using the proposed simplification method. An example was shown how this method worked. After that a new method of calculating the P-V droop coefficient was proposed. Finally, a simulation model was investigated to verify if the proposed method can operate in a real system. The results showed that the simplification method can ensure the mathematical relationships of the dc system. And simulations show good performances of the droop coefficient calculation method.

Keywords: new method; method; droop coefficient; droop coefficients; control

Journal Title: IEEE Transactions on Power Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.