LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Revisiting Grid-Forming and Grid-Following Inverters: A Duality Theory

Photo from wikipedia

Power electronic converters for integrating renewable energy resources into power systems can be divided into grid-forming and grid-following inverters. They possess certain similarities, but several important differences, which means that… Click to show full abstract

Power electronic converters for integrating renewable energy resources into power systems can be divided into grid-forming and grid-following inverters. They possess certain similarities, but several important differences, which means that the relationship between them is quite subtle and sometimes obscure. In this article, a new perspective based on duality is proposed to create new insights. It successfully unifies the grid interfacing and synchronization characteristics of the two inverter types in a symmetric, elegant, and technology-neutral form. Analysis shows that the grid-forming and grid-following inverters are duals of each other in several ways including a) synchronization controllers: frequency droop control and phase-locked loop (PLL); b) grid-interfacing characteristics: current-following voltage-forming and voltage-following current-forming; c) swing characteristics: current-angle swing and voltage-angle swing; d) inner-loop controllers: output impedance shaping and output admittance shaping; and e) grid strength compatibility: stronggrid instability and weak-grid instability. The swing equations are also derived in dual form, which reveal the dynamic interaction between the grid strength, the synchronization controllers, and the inner-loop controllers. Insights are generated into cases of poor stability in both small-signal and transient/large-signal. The theoretical analysis and simulation results are used to illustrate cases for simple single-inverter-infinite-bus systems and a multiinverter power network.

Keywords: forming grid; grid; grid forming; grid following; following inverters; power

Journal Title: IEEE Transactions on Power Systems
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.