LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Novel Discriminant Locality Preserving Projection Integrated With Monte Carlo Sampling for Fault Diagnosis

Photo by impulsq from unsplash

In complex industrial processes, the technique of fault diagnosis has been playing an increasingly considerable role in ensuring the safety of life and property. Unfortunately, the process data of complex… Click to show full abstract

In complex industrial processes, the technique of fault diagnosis has been playing an increasingly considerable role in ensuring the safety of life and property. Unfortunately, the process data of complex industrial processes have the features of high dimension. Feature extraction from high-dimensional data is promising to coping with the fault data with high dimension. Recently, one of manifold learning methods named discriminant locality preserving projection achieves excellent performance in feature extraction. However, the performance of discriminant locality preserving projection (DLPP) is subject to the problem of matrix decomposition in the denominator of the objection function caused by the small sample size (SSS) issue. To overcome this limitation, novel DLPP integrated with Monte Carlo sampling is proposed to enhance the performance of feature extraction through dimensionality reduction. In the proposed MC-DLPP, Monte Carlo sampling is first utilized to generate fault samples for each fault type. With the aid of the virtually generated fault samples, the rank of the matrix in the denominator of the objection function of DLPP increases, thus well addressing the SSS problem. The Softmax classifier is used for fault diagnosis. To test the performance of the improved DLPP-based fault diagnosis, case studies using the Tennessee Eastman process are carried out. Simulation results confirm the presented MC-DLPP achieves superior accuracy in fault diagnosis.

Keywords: discriminant locality; fault diagnosis; preserving projection; locality preserving; fault

Journal Title: IEEE Transactions on Reliability
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.