LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic Analysis of Three Snake Robot Gaits

Photo by rocknrollmonkey from unsplash

In the present paper, a dynamic analysis is presented, comparing three snake-like robot gaits: lateral undulation, sidewinding locomotion, and sinus-lifting motion. To simplify calculations, sidewinding locomotion and sinus-lifting motion are… Click to show full abstract

In the present paper, a dynamic analysis is presented, comparing three snake-like robot gaits: lateral undulation, sidewinding locomotion, and sinus-lifting motion. To simplify calculations, sidewinding locomotion and sinus-lifting motion are considered planar movements. Vertical movements are assumed to be small but play a critical role in change where contacts are made. Thus, the normal forces acting on grounded links and the torques applied to pitch joints can be calculated by solving equilibrium equations. The tradeoff between locomotion speed and energy efficiency is studied for all three gaits, at eight different environmental settings distinguished by friction coefficients. Simulation results reveal that sinus-lifting motion and sidewinding locomotion are generally more energy-efficient gaits than is lateral undulation. More specifically, if the anisotropy in friction is large enough, sinus-lifting motion is the most energy-efficient gait; otherwise, sidewinding locomotion is more efficient. However, there are some critical speeds at which the most efficient gait changes, in some environmental settings.

Keywords: locomotion; robot gaits; three snake; sidewinding locomotion; sinus lifting; dynamic analysis

Journal Title: IEEE Transactions on Robotics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.