A class of abstract aerial robotic systems is introduced, the laterally bounded force vehicles, in which most of the control authority is expressed along a principal thrust direction, while along… Click to show full abstract
A class of abstract aerial robotic systems is introduced, the laterally bounded force vehicles, in which most of the control authority is expressed along a principal thrust direction, while along the lateral directions a (smaller and possibly null) force may be exploited to achieve full-pose tracking. This class approximates platforms endowed with noncollinear rotors that can modify the orientation of the total thrust in a body frame. If made possible by the force constraints, the proposed SE(3)-based control strategy achieves the independent tracking of position-plus-orientation trajectories. The method, which is proven using a Lyapunov technique, deals seamlessly with both underactuated and fully actuated platforms, and guarantees at least the position tracking in the case of an unfeasible full-pose reference trajectory. Several experimental tests are presented that clearly show the approach practicability and the sharp improvement with respect to state of the art.
               
Click one of the above tabs to view related content.