LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

SLAAM: Simultaneous Localization and Additive Manufacturing

Photo by _pngdesign from unsplash

This article presents a viable approach to mobile 3-D printing in which a large object is printed in segments. The printer's motion between printing each segment is localized precisely using… Click to show full abstract

This article presents a viable approach to mobile 3-D printing in which a large object is printed in segments. The printer's motion between printing each segment is localized precisely using the novel procedure of simultaneous localization and additive manufacturing (SLAAM), enabling the joining of subsequent segments while also maintaining overall geometric compliance of the printed part. SLAAM achieves sub-mm accuracy on objects over 400 mm long. SLAAM demonstrates the importance of fusing local (3-D scanner), and global (total-station range finder) sensing, and of maintaining, and updating estimates of the printed part geometry in a global frame. A six-parameter representation for a printed object's planar surfaces, consisting of the plane's normal vector, and a 3-D point on the planar patch itself, demonstrates good performance even in the presence of high odometry error.

Keywords: simultaneous localization; slaam; localization additive; additive manufacturing

Journal Title: IEEE Transactions on Robotics
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.