Flying insects are remarkably agile and robust. As they fly through cluttered natural environments, they can demonstrate aggressive acrobatic maneuvers such as backflip, rapid escape, and in-flight collision recovery. Current… Click to show full abstract
Flying insects are remarkably agile and robust. As they fly through cluttered natural environments, they can demonstrate aggressive acrobatic maneuvers such as backflip, rapid escape, and in-flight collision recovery. Current state-of-the-art subgram microaerial-vehicles (MAVs) are predominately powered by rigid actuators such as piezoelectric ceramics, but they have low fracture strength (120 MPa) and failure strain (0.3%). Although these existing systems can achieve a high lift-to-weight ratio, they have not demonstrated insect-like maneuvers such as somersault or rapid collision recovery. In this article, we present a 665 mg aerial robot that is powered by novel dielectric elastomer actuators (DEA). The new DEA achieves high power density (1.2 kW/kg) and relatively high transduction efficiency (37%). We further incorporate this soft actuator into an aerial robot to demonstrate novel flight capabilities. This insect-scale aerial robot has a large lift-to-weight ratio (>2.2:1) and it achieves an ascending speed of 70 cm/s. In addition to demonstrating controlled hovering flight, it can recover from an in-flight collision and perform a somersault within 0.16 s. This work demonstrates that soft aerial robots can achieve insect-like flight capabilities absent in rigid-powered MAVs, thus showing the potential of a new class of hybrid soft-rigid robots.
               
Click one of the above tabs to view related content.