LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reliable Computing Service in Massive-Scale Systems through Rapid Low-Cost Failover

Photo by calum_mac from unsplash

Large-scale distributed systems deployed as Cloud datacenters are capable of provisioning service to consumers with diverse business requirements. Providers face pressure to provision uninterrupted reliable services while reducing operational costs… Click to show full abstract

Large-scale distributed systems deployed as Cloud datacenters are capable of provisioning service to consumers with diverse business requirements. Providers face pressure to provision uninterrupted reliable services while reducing operational costs due to significant software and hardware failures. A widely adopted means to achieve such a goal is using redundant system components to implement user-transparent failover, yet its effectiveness must be balanced carefully without incurring heavy overhead when deployed—an important practical consideration for complex large-scale systems. Failover techniques developed for Cloud systems often suffer serious limitations, including mandatory restart leading to poor cost-effectiveness, as well as solely focusing on crash failures, omitting other important types, such as timing failures and simultaneous failures. This paper addresses these limitations by presenting a new approach to user-transparent failover for massive-scale systems. The approach uses soft-state inference to achieve rapid failure recovery and avoid unnecessary restart, with minimal system resource overhead. It also copes with different failures, including correlated and simultaneous events. The proposed approach was implemented, deployed and evaluated within Fuxi system, the underlying resource management system used within Alibaba Cloud. Results demonstrate that our approach tolerates complex failure scenarios while incurring at worst 228.5 microsecond instance overhead with 1.71 percent additional CPU usage.

Keywords: system; massive scale; failover; service; scale; scale systems

Journal Title: IEEE Transactions on Services Computing
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.