LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Posterior-Neighborhood-Regularized Latent Factor Model for Highly Accurate Web Service QoS Prediction

Photo by impatrickt from unsplash

Neighborhood regularization is highly important for a latent factor (LF)-based Quality-of-Service (QoS)-predictor since similar users usually experience similar QoS when invoking similar services. Current neighborhood-regularized LF models rely prior information… Click to show full abstract

Neighborhood regularization is highly important for a latent factor (LF)-based Quality-of-Service (QoS)-predictor since similar users usually experience similar QoS when invoking similar services. Current neighborhood-regularized LF models rely prior information on neighborhood obtained from common raw QoS data or geographical information. The former suffers from low prediction accuracy due to the difficulty of constructing the neighborhood based on incomplete QoS data, while the latter requires additional geographical information that is usually difficult to collect considering information security, identity privacy, and commercial interests in real-world scenarios. To address the above issues, this work proposes a posterior-neighborhood-regularized LF (PLF) model for QoS prediction. The main idea is to decompose the LF analysis process into three phases: a) primal LF extraction, where the LFs are extracted to represent involved users/services based on known QoS data, b) posterior-neighborhood construction, where the neighborhood of each user/service is achieved based on similarities between their primal LF vectors, and c) posterior-neighborhood-regularized LF analysis, where the objective function is regularized by both the posterior-neighborhood of users/services and $L_{2}$L2-norm of desired LFs. Experimental results from large scale QoS datasets demonstrate that PLF outperforms state-of-the-art models in terms of both accuracy and efficiency.

Keywords: mml; service; qos; neighborhood regularized; posterior neighborhood

Journal Title: IEEE Transactions on Services Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.