LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Cyclic Game for Service-Oriented Resource Allocation in Edge Computing

Photo from wikipedia

Existing works adopt the Edge-Oriented Resource Allocation (EORA) scheme, in which edge nodes cache services and schedule user requests to distribute workloads over cloud and edge nodes, so as to… Click to show full abstract

Existing works adopt the Edge-Oriented Resource Allocation (EORA) scheme, in which edge nodes cache services and schedule user requests to distribute workloads over cloud and edge nodes, so as to achieve high-quality services and low latency. Unfortunately, EORA does not fully take into account the fact that service providers are sometimes independent from the edge operators with their own objectives. To deal with the conflict and cooperation between service providers and edge nodes, we devise a service-oriented resource allocation (SORA) scheme, where edge nodes and service providers adjust their resource allocations to provide requested services. We first prove that such resource allocation problem is NP-hard. We then propose a three-sided cyclic game (3CG) involving users, edge nodes, and service providers who make their individual decisions by choosing respectively high-quality services, high-value users, and cost-effective edge nodes for service deployment. Based on 3CG, we prove the existence and approximation ratio of pure-strategy Nash equilibriums (NEs). We also develop both centralized and distributed approximate algorithms for resource allocation. Finally, extensive experimental results validate the effectiveness and convergence of the proposed algorithms.

Keywords: resource allocation; edge; oriented resource; service; edge nodes

Journal Title: IEEE Transactions on Services Computing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.