LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dynamic User Allocation in Stochastic Mobile Edge Computing Systems

Photo from wikipedia

Mobile edge computing (MEC) is a new distributed computing paradigm where edge servers are deployed at, or near cellular base stations in close proximity to end-users. This offers computing resources… Click to show full abstract

Mobile edge computing (MEC) is a new distributed computing paradigm where edge servers are deployed at, or near cellular base stations in close proximity to end-users. This offers computing resources at the edge of the network, facilitating a highly accessible platform for real-time, latency-sensitive services. A typical MEC environment is highly stochastic with random user arrivals and departures over time. Here, we address the user allocation problem from a service provider's perspective, who needs to allocate its users to the cloud or edge servers in a specific area. A user, who has a multi-dimensional resource requirement, can be allocated to either the remote cloud, which incurs a high latency, or an edge server, which results in a low latency but might require the user to wait in a queue. This article aims to achieve a controllable trade-off between performance (throughput) and several associated costs such as queuing delay and latency costs. We model this problem as a stochastic optimization problem, propose SUAC (Stochastic User AlloCation) – an online Lyapunov optimization-based algorithm, and prove its performance bounds. The experimental results demonstrate that SUAC outperforms existing approaches, effectively allocating users with a desired trade-off while keeping the system strongly stable.

Keywords: mobile edge; edge; latency; edge computing; user allocation

Journal Title: IEEE Transactions on Services Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.