LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Indirect Revocable KP-ABE With Revocation Undoing Resistance

Photo by cstembridge from unsplash

Lately, many cloud-based applications proposed attribute-based encryption (ABE) as an all-in-one solution for achieving confidentiality and access control. Within this paradigm, data producers store the encrypted data on a semi-trusted… Click to show full abstract

Lately, many cloud-based applications proposed attribute-based encryption (ABE) as an all-in-one solution for achieving confidentiality and access control. Within this paradigm, data producers store the encrypted data on a semi-trusted cloud server, and users, holding decryption keys issued by a key authority, can decrypt data according to some access control policy. To be used in practical cases, any ABE scheme should implement a key revocation mechanism which assures that a compromised decryption key cannot be used anymore to decrypt data. Yu et al. (2010) introduced an ABE scheme with revocation capabilities that enjoys several unique advantages, such as reactivity and efficiency. In the scheme, the cloud server is entitled to update keys and ciphertexts in order to achieve revocation. Unfortunately, the cloud server retains the power to undo the revocation of a key (revocation undoing attack) so endangering confidentiality. In this article, we propose a revocable ABE scheme that still ensures the advantages of Yu et al.’s scheme, but it also resists to the revocation undoing attack. We formally prove the security of our scheme and show through simulations that the user experiences a slightly higher computational cost with respect to Yu et al.’s scheme.

Keywords: revocable abe; revocation undoing; revocation; cloud server; scheme

Journal Title: IEEE Transactions on Services Computing
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.