Battery storage is usually employed in photovoltaic (PV) system to mitigate the power fluctuations due to the characteristics of PV panels and solar irradiance. Control schemes for PV-battery systems must… Click to show full abstract
Battery storage is usually employed in photovoltaic (PV) system to mitigate the power fluctuations due to the characteristics of PV panels and solar irradiance. Control schemes for PV-battery systems must be able to stabilize the bus voltages as well as to control the power flows flexibly. This paper proposes a comprehensive control and power management system (CAPMS) for PV-battery-based hybrid microgrids with both ac and dc buses, for both grid-connected and islanded modes. The proposed CAPMS is successful in regulating the dc and ac bus voltages and frequency stably, controlling the voltage and power of each unit flexibly, and balancing the power flows in the systems automatically under different operating circumstances, regardless of disturbances from switching operating modes, fluctuations of irradiance and temperature, and change of loads. Both simulation and experimental case studies are carried out to verify the performance of the proposed method.
               
Click one of the above tabs to view related content.