LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Model Predictive Control of Distributed Generations With Feed-Forward Output Currents

Photo by charlesdeluvio from unsplash

In this paper, a voltage and frequency control scheme based on model predictive control is proposed for inverter-based distributed generations (DGs). Currents injected into an off-grid system (e.g., a passive… Click to show full abstract

In this paper, a voltage and frequency control scheme based on model predictive control is proposed for inverter-based distributed generations (DGs). Currents injected into an off-grid system (e.g., a passive network with loads or an islanded microgrid) at the point of common coupling of the DG are considered as disturbances and used as feed-forward signals. These signals enhance the transient performance of the DG control system for a wide range of switched loads as well as for switching and operating the DG in an islanded microgrid. The stability and robustness of the proposed control scheme are analyzed and discussed. The effectiveness of the scheme is demonstrated by extensive time-domain simulations using PSCAD/EMTDC for various loads (such as balanced/imbalanced, and nonlinear and dynamic loads), fault conditions, and DG operation after switching in an islanded microgrid. Comparison of the obtained results with those of three previously developed schemes shows superiority of the proposed scheme.

Keywords: control; predictive control; scheme; distributed generations; feed forward; model predictive

Journal Title: IEEE Transactions on Smart Grid
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.