LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Steady-State Simulation for Combined Transmission and Distribution Systems

Photo from wikipedia

The future electric grid will consist of significant penetration of renewable and distributed generation that is likely to create a homogenous transmission and distribution (T&D) system, requiring tools that can… Click to show full abstract

The future electric grid will consist of significant penetration of renewable and distributed generation that is likely to create a homogenous transmission and distribution (T&D) system, requiring tools that can model and robustly simulate the combined T&D networks. Existing tools use disparate models and formulations for simulation of transmission versus distribution grids and solving for the steady-state solution of the combined T&D networks often lacks convergence robustness and scalability to large systems. In this paper, we show that modeling both the T&D grid elements in terms of currents and voltages using an equivalent circuit framework enables simulation of combined positive sequence networks of the transmission grids with three-phase networks of the distribution grids without loss of generality. We further demonstrate that we can ensure robust convergence for these resulting large-scale complex T&D systems when the circuit simulation methods are applied to them. Our results illustrate robust convergence of combined T&D networks using a direct Newton-Raphson solver on a single machine for smaller sized systems and using a parallel Gauss-Seidel-Newton solver on multiple machines for larger sized systems with greater than million nodes.

Keywords: simulation combined; transmission distribution; transmission; distribution; steady state

Journal Title: IEEE Transactions on Smart Grid
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.