“Source ID Mix” spoofing emerged as a new type of cyber-attack on Distribution Synchrophasors (DS) where adversaries have the capability to swap the source information of DS without changing the… Click to show full abstract
“Source ID Mix” spoofing emerged as a new type of cyber-attack on Distribution Synchrophasors (DS) where adversaries have the capability to swap the source information of DS without changing the measurement values. Accurate detection of such a highly-deceptive attack is a challenging task especially when the spoofing attack happens on short fragments of DS recorded within a relatively small geographical scale. This letter proposes an effective approach to detect this cyber-attack by realizing the multifractal characteristics of DS measurements. First, the multifractal cross-correlation of DS measured at multiple intra-state locations is revealed. Then the derived correlation is integrated with weighted two-dimensional multifractal surface interpolation to reconstruct quasi high-resolution signals. Finally, informative location-specific signatures are extracted from the high-resolution DS and they are integrated with advanced machine learning techniques for source authentication. Experiments using the real-life DS are performed to verify the proposed method.
               
Click one of the above tabs to view related content.