LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Risk-Based Constraints for the Optimal Operation of an Energy Community

Photo from wikipedia

This paper formulates an energy community’s centralized optimal bidding and scheduling problem as a time-series scenario-driven stochastic optimization model, building on real-life measurement data. In the presented model, a surrogate… Click to show full abstract

This paper formulates an energy community’s centralized optimal bidding and scheduling problem as a time-series scenario-driven stochastic optimization model, building on real-life measurement data. In the presented model, a surrogate battery storage system with uncertain state-of-charge (SoC) bounds approximates the portfolio’s aggregated flexibility. First, it is emphasized in a stylized analysis that risk-based energy constraints are highly beneficial (compared to chance-constraints) in coordinating distributed assets with unknown costs of constraint violation, as they limit both violation magnitude and probability. The presented research extends state-of-the-art models by implementing a worst-case conditional value at risk (WCVaR) based constraint for the storage SoC bounds. Then, an extensive numerical comparison is conducted to analyze the trade-off between out-of-sample violations and expected objective values, revealing that the proposed WCVaR based constraint shields significantly better against extreme out-of-sample outcomes than the conditional value at risk based equivalent. To bypass the non-trivial task of capturing the underlying time and asset-dependent uncertain processes, real-life measurement data is directly leveraged for both imbalance market uncertainty and load forecast errors. For this purpose, a shape-based clustering method is implemented to capture the input scenarios’ temporal characteristics.

Keywords: energy community; based constraints; risk; risk based

Journal Title: IEEE Transactions on Smart Grid
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.