This paper proposes the use of annealing-based quantum computing for solving combinatorial optimal power flow problems. Quantum annealers provide a physical computing platform which utilises quantum phase transitions to solve… Click to show full abstract
This paper proposes the use of annealing-based quantum computing for solving combinatorial optimal power flow problems. Quantum annealers provide a physical computing platform which utilises quantum phase transitions to solve specific classes of combinatorial problems. These devices have seen rapid increases in scale and performance, and are now approaching the point where they could be valuable for industrial applications. This paper shows how an optimal power flow problem incorporating linear multiphase network modelling, discrete sources of energy flexibility, renewable generation placement/sizing and network upgrade decisions can be formulated as a quadratic unconstrained binary optimisation problem, which can be solved by quantum annealing. Case studies with these components integrated with the IEEE European Low Voltage Test Feeder are implemented using D-Wave Systems’ 5,760 qubit Advantage quantum processing unit and hybrid quantum-classical solver.
               
Click one of the above tabs to view related content.