LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Discrete-Time Local Value Iteration Adaptive Dynamic Programming: Convergence Analysis

Photo by jontyson from unsplash

In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive… Click to show full abstract

In this paper, convergence properties are established for the newly developed discrete-time local value iteration adaptive dynamic programming (ADP) algorithm. The present local iterative ADP algorithm permits an arbitrary positive semidefinite function to initialize the algorithm. Employing a state-dependent learning rate function, for the first time, the iterative value function and iterative control law can be updated in a subset of the state space instead of the whole state space, which effectively relaxes the computational burden. A new analysis method for the convergence property is developed to prove that the iterative value functions will converge to the optimum under some mild constraints. Monotonicity of the local value iteration ADP algorithm is presented, which shows that under some special conditions of the initial value function and the learning rate function, the iterative value function can monotonically converge to the optimum. Finally, three simulation examples and comparisons are given to illustrate the performance of the developed algorithm.

Keywords: time; value; function; local value; convergence; value iteration

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.