Wafer revisiting and residency time constraints complicate the scheduling problem of cluster tools in semiconductor manufacturing. Random disturbance to the activity time in operating a tool further complicates such a… Click to show full abstract
Wafer revisiting and residency time constraints complicate the scheduling problem of cluster tools in semiconductor manufacturing. Random disturbance to the activity time in operating a tool further complicates such a scheduling problem. To solve this challenging problem, this paper proposes a robust real-time schedule which consists of a real-time controller (RTC) and an off-line schedule. The former is developed to offset the activity time disturbance such that the wafer sojourn time fluctuation in a process module is minimized. With the RTC, to find the off-line schedule, necessary and sufficient schedulability conditions under which a feasible schedule exists are derived and these conditions can be easily checked. Then, the off-line schedule can be efficiently found by the proposed algorithms based on nondisturbed activity time if a feasible schedule exists. With the obtained real-time schedule, it is shown that the productivity of the system is maximized. Finally, examples are used to illustrate the proposed approach.
               
Click one of the above tabs to view related content.