This paper studies the output tracking control problems for multiple-input, multiple-output (MIMO) locally Lipschitz nonlinear (LLNL) systems subject to iterative operation and uncertain, iteration-varying external disturbances and initial conditions. Under… Click to show full abstract
This paper studies the output tracking control problems for multiple-input, multiple-output (MIMO) locally Lipschitz nonlinear (LLNL) systems subject to iterative operation and uncertain, iteration-varying external disturbances and initial conditions. Under the assumption of a linear, P-type iterative learning control (ILC) update law, a double-dynamics analysis (DDA) approach is proposed to show the convergence of the ILC process in the presence of the locally Lipschitz nonlinearities and iteration-varying uncertainties. The DDA approach results in a contraction mapping-based convergence condition that guarantees both: 1) the boundedness of all system trajectories and 2) the robust convergence of the output tracking error. Further, a basic system relative degree condition is given that provides a necessary and sufficient (NAS) guarantee of the convergence of the ILC process. As a corollary, it is noted that in the absence of iteration-varying uncertainties, the results likewise provide an NAS convergence guarantee for MIMO LLNL systems. The simulations are presented to illustrate the ideas.
               
Click one of the above tabs to view related content.