LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multisource Domain Attribute Adaptation Based on Adaptive Multikernel Alignment Learning

Photo from wikipedia

For attribute-based zero-shot learning (ZSL), the attribute classifiers learned previously on the training images may not be usable for the testing images due to that the training and testing images… Click to show full abstract

For attribute-based zero-shot learning (ZSL), the attribute classifiers learned previously on the training images may not be usable for the testing images due to that the training and testing images may follow different data distributions. Since domain adaptation learning can effectively perform knowledge transfer under the circumstance of different data distributions, we proposed a novel ZSL method, referred to as multisource domain attribute adaptation based on adaptive multikernel alignment learning (A-MKAL), from the point of view of classifier adaptation. Considering there may be a large difference between object classes, we adopt the clustering method to group the training images according to the class–class correlation measured by the whitened cosine similarity, thus multiple source domains are created. The created multiple source domains are then combined into one weighted source domain to participate in the distribution discrepancy match across domains. In order to adapt the attribute classifier learned on the well-defined source domains to the target domain (the training image set), we designed the A-MKAL by applying the centered kernel alignment to align the attribute kernel matrix and the kernel function of adaptive multiple kernel learning. Experiments on Shoes, OSR, and AWA datasets show that, compared with state-of-the-art methods, our proposed method yields more accurate classification.

Keywords: adaptation based; adaptation; attribute adaptation; multisource domain; domain attribute; domain

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.