A stochastic gradient (SG)-based particle filter (SG-PF) algorithm is developed for an ARX model with nonlinear communication output in this paper. This ARX model consists of two submodels, one is… Click to show full abstract
A stochastic gradient (SG)-based particle filter (SG-PF) algorithm is developed for an ARX model with nonlinear communication output in this paper. This ARX model consists of two submodels, one is a linear ARX model and the other is a nonlinear output model. The process outputs (outputs of the linear submodel) transmitted over a communication channel are unmeasurable, while the communication outputs (outputs of the nonlinear submodel) are available, and both of the two-type outputs are contaminated by white noises. Based on the rich input data and the available communication output data, a SG-PF algorithm is proposed to estimate the unknown process outputs and parameters of the ARX model. Furthermore, a direct weight optimization method and the Epanechnikov kernel method are extended to modify the particle filter when the measurement noise is a Gaussian noise with unknown variance and the measurement noise distribution is unknown. The simulation results demonstrate that the SG-PF algorithm is effective.
               
Click one of the above tabs to view related content.