LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Finite-Time Control of Continuous-Time Networked Dynamical Systems

Photo by jontyson from unsplash

Finite-time stability (FTS) analysis and control problems are investigated in this paper for continuous-time networked dynamical systems constituted by many subsystems. Interactions among these subsystems are arbitrary and time-varying, and… Click to show full abstract

Finite-time stability (FTS) analysis and control problems are investigated in this paper for continuous-time networked dynamical systems constituted by many subsystems. Interactions among these subsystems are arbitrary and time-varying, and every subsystem has different and time-varying dynamics. Several differential linear matrix inequality (LMI) formed methods are presented for the FTS analysis and control, which avoid the inverse computation of matrices with large dimensions and efficiently utilize the block diagonal characteristic of system parameters and the sparseness of the subsystem connection matrix. Sufficient conditions only depending on the parameters of each individual subsystem are then derived. Furthermore, LMI-based conditions are also provided for the FTS analysis and control of linear time-invariant networked systems. Numerical simulations show that they are computationally effective to analyze and synthesize a large-scale networked dynamical systems.

Keywords: finite time; time; control; networked dynamical; dynamical systems; continuous time

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.