LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Unknown Dynamics Estimator-Based Output-Feedback Control for Nonlinear Pure-Feedback Systems

Photo from wikipedia

Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural… Click to show full abstract

Most existing adaptive control designs for nonlinear pure-feedback systems have been derived based on backstepping or dynamic surface control (DSC) methods, requiring full system states to be measurable. The neural networks (NNs) or fuzzy logic systems (FLSs) used to accommodate uncertainties also impose demanding computational cost and sluggish convergence. To address these issues, this paper proposes a new output-feedback control for uncertain pure-feedback systems without using backstepping and function approximator. A coordinate transform is first used to represent the pure-feedback system in a canonical form to evade using the backstepping or DSC scheme. Then the Levant’s differentiator is used to reconstruct the unknown states of the derived canonical system. Finally, a new unknown system dynamics estimator with only one tuning parameter is developed to compensate for the lumped unknown dynamics in the feedback control. This leads to an alternative, simple approximation-free control method for pure-feedback systems, where only the system output needs to be measured. The stability of the closed-loop control system, including the unknown dynamics estimator and the feedback control is proved. Comparative simulations and experiments based on a PMSM test-rig are carried out to test and validate the effectiveness of the proposed method.

Keywords: pure feedback; system; control; feedback control; feedback; feedback systems

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.