In this article, we concentrate on dealing with the distributed optimization problem over a directed network, where each unit possesses its own convex cost function and the principal target is… Click to show full abstract
In this article, we concentrate on dealing with the distributed optimization problem over a directed network, where each unit possesses its own convex cost function and the principal target is to minimize a global cost function (formulated by the average of all local cost functions) while obeying the network connectivity structure. Most of the existing methods, such as push-sum strategy, have eliminated the unbalancedness induced by the directed network via utilizing column-stochastic weights, which may be infeasible if the distributed implementation requires each unit to gain access to (at least) its out-degree information. In contrast, to be suitable for the directed networks with row-stochastic weights, we propose a new directed distributed Nesterov-like gradient tracking algorithm, named as D-DNGT, that incorporates the gradient tracking into the distributed Nesterov method with momentum terms and employs nonuniform step-sizes. D-DNGT extends a number of outstanding consensus algorithms over strongly connected directed networks. The implementation of D-DNGT is straightforward if each unit locally chooses a suitable step-size and privately regulates the weights on information that acquires from in-neighbors. If the largest step-size and the maximum momentum coefficient are positive and small sufficiently, we can prove that D-DNGT converges linearly to the optimal solution provided that the cost functions are smooth and strongly convex. We provide numerical experiments to confirm the findings in this article and contrast D-DNGT with recently proposed distributed optimization approaches.
               
Click one of the above tabs to view related content.