LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robust LMI-Based H-Infinite Controller Integrating AFS and DYC of Autonomous Vehicles With Parametric Uncertainties

Photo from wikipedia

Autonomous vehicles’ dynamics stability control is one key issue to ensure safety of self-driving. However, vehicle uncertainties and time-varying parameters could weaken the performance of autonomous vehicle stability control. Therefore,… Click to show full abstract

Autonomous vehicles’ dynamics stability control is one key issue to ensure safety of self-driving. However, vehicle uncertainties and time-varying parameters could weaken the performance of autonomous vehicle stability control. Therefore, this article proposes a novel robust linear matrix inequality (LMI)-based $H$ -infinite feedback algorithm for vehicle dynamics stability control, and this algorithm controls vehicle steering system and brake system via direct yaw moment control (DYC) and active front steering control (AFS). The presented controller is robust against vehicle parametric uncertainties, including the vehicle mass and vehicle longitudinal velocity. A linear parameter varying lateral model is constructed utilizing polytopic uncertainty method considering time-varying vehicle longitudinal velocity and mass, where a polytope that contains finite vertices is established to contain all of the possible selections for uncertainty parameters. Then, the $H$ -infinite feedback controller integrating DYC and AFS is derived via LMI technique. Finally, experimental results based on hardware-in-the-loop (HIL) platform illustrate that the presented controller has better performance of ensuring autonomous vehicle dynamics stability than other controllers.

Keywords: vehicle; lmi based; autonomous vehicles; controller; tex math; inline formula

Journal Title: IEEE Transactions on Systems, Man, and Cybernetics: Systems
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.