This article addresses the three-dimensional (3-D) coordinated control problem of directed networked aircraft-like vehicles, that is to track a set of given orbits on a sphere and achieve a lateral… Click to show full abstract
This article addresses the three-dimensional (3-D) coordinated control problem of directed networked aircraft-like vehicles, that is to track a set of given orbits on a sphere and achieve a lateral formation flight. Different from the case of Newton particles, a nonholonomic dynamics with unknown disturbances is considered. A novel method to decouple the spherical orbit tracking subsystem and the lateral formation flying subsystem is proposed. By overlooking the control of the vehicle’s surge velocity, a nonsmooth spherical orbit tracking algorithm is designed by backstepping. Without considering the spherical orbit tracking errors and using any global information of topologies, a distributed, nonsmooth formation protocol is designed. The input-to-state stability (ISS) theory is used to analyze the converge property of the interconnected system consisting of these two subsystems. Simulation results are given to verify the theoretical analysis.
               
Click one of the above tabs to view related content.